42 research outputs found

    Efficient production of hybrid bio-nanomaterials by continuous microchannel emulsification: Dye-doped SiO2 and Au-PLGA nanoparticles

    Get PDF
    A novel microfluidic system was designed to produce in a continuous manner hybrid nanomaterials using the microchannel double w/o/w emulsification technique. Double w/o/w nanoemulsions were produced combining two inter-digital micromixers that afford working in continuous flow and with a high reproducibility and control on the reaction conditions. High throughput production of two hybrid nanomaterials, dye-doped SiO2 (4 mg/min) and Au-loaded poly(lactic-co-glycolic) acid (PLGA) (168 mg/min) nanoparticles, were achieved, showing the resulting nanomaterials excellent and reproducible optical properties and tunable loading. These hybrid nanomaterials could be potentially used in different biomedical applications. In addition, the microfluidic system designed for carrying out double emulsification enabled to decrease the particle size distribution of dye-doped SiO2 nanoparticles (NPs) up to 20 nm and to improve the Au NPs loading efficiency in Au-loaded PLGA hybrid nanoparticles. The excellent control achieved in the Au NPs loading allowed tuning the payload on demand. Finally, the microfluidic system designed in this work overpasses the productivity described in previously published batch-type reactors, while assuring the same properties of the resulting hybrid nanomaterials

    A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    Get PDF
    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography

    IoT Smart Parking System Based on the Visual-Aided Smart Vehicle Presence Sensor: SPIN-V

    Get PDF
    Humanity is currently experiencing one of the short periods of transition thanks to novel sensing solutions for smart cities that bring the future to today. Overpopulation of cities demands the development of solid strategic plannings that uses infrastructure, innovation, and technology to adapt to rapid changes. To improve mobility in cities with a larger and larger vehicle fleet, a novel sensing solution that is the cornerstone of a smart parking system, the smart vehicular presence sensor (SPIN-V, in its Spanish abbreviation), is presented. The SPIN-V is composed of a small single-board computer, distance sensor, camera, LED indicator, buzzer, and battery and devoted to obtain the status of a parking space. This smart mobility project involves three main elements, namely the SPIN-V, a mobile application, and a monitoring center, working together to monitor, control, process, and display the parking space information in real-time to the drivers. In addition, the design and implementation of the three elements of the complete architecture are presented.ITESO, A.C

    A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    Get PDF
    A new strategy to nanoengineer multi-functional polymer–metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and noncovalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(DL-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomograph

    Atmospheric electrification in dusty, reactive gases in the solar system and beyond

    Get PDF
    Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability

    Get PDF
    Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron-limitation of Prochlorococcus cell division rates in these regions has been demonstrated. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady-state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially-expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Biological Oceanography)United States. Office of Naval Research (ONR Young Investigator Award)National Science Foundation (U.S.) (Chemical Oceanography)National Science Foundation (U.S.) (Environmental Genomics grants

    GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star

    Get PDF
    Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We present the work from Lam et al. 2021 (Science, 374, 1271) and report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter - close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury's interior

    Imaging and therapy of brain cancer using theranostic nanoparticles

    Get PDF
    Glioma is a general term used to describe the primary brain tumors that are the most common in the central nervous system (CNS). Glioblastoma multiforme (GBM) is the most malignant type which constitutes more than 60% of all brain tumors in adults. Despite the variety of therapies researched against GBM, it is still a deadly disease with extremely poor prognosis (average survival of 18 months). One of the main strategies to achieve lower mortality is the early detection, localization and typing, followed the precise therapy and monitoring of the tumor. In the field of diagnosis, nanotechnology plays an important role and several nanosystems have improved the accuracy of different imaging techniques. This is the case of superparamagnetic iron oxide nanoparticles (SPION) for magnetic resonance imaging (MRI) or gold nanoparticles (AuNP) for computed tomography (CT). From the therapeutic point of view, doxorubicin (DOX) is a potent antineoplastic drug widely used in the treatment of cancer. Administered in a free form it does not target the tumor and high doses are needed, which cause cardiotoxicity. Nanomedicine is also considered an interesting alternative since the drug encapsulated has greater the bioavailability, decreasing the toxicity and increasing the efficacy of the treatment. On top of that, numerous studies such as those carried out by our research group have shown that by modifying the surface of the nanocarriers with for example the surfactant Tween® 80 (T80), they are able to cross the blood brain barrier (BBB): failure to do so is the main cause of chemotherapy failure in CNS diseases. It is indeed well acknowledged that magnetic nanoparticles, like the SPION already mentioned, could also improve the specificity of treatment since they can be attracted by magnets. All in all, it is possible to combine the application of nanotechnology to the diagnosis and treatment of diseases such as glioma, leading to theragnosis. As a matter of fact, diagnostic/therapeutic nanoplatforms are a new and promising step towards personalized medicine and early diagnosis. The primary hypothesis of this project is that the coencapsulation of DOX (as a treatment agent) and AuNP or SPION (as a diagnostic agents) in the same nanosystem will allow NP monitoring and, therefore, tumor monitoring. Apart from that, the encapsulation of DOX in polymeric nanoparticles (PNP) coated with different surfactants along with magnetic targeting of SPION will allow BBB permeation and therefore glioma therapy improvement. Overall, the main objective of this project is the design and development of nanosystems for the treatment and diagnosis of cancer. The second objective is to study the influence of different surfactants in the BBB permeation, as well as the influence of magnetic targeting of SPION inside the brain

    Imaging and therapy of brain cancer using theranostic nanoparticles

    No full text
    Glioma is a general term used to describe the primary brain tumors that are the most common in the central nervous system (CNS). Glioblastoma multiforme (GBM) is the most malignant type which constitutes more than 60% of all brain tumors in adults. Despite the variety of therapies researched against GBM, it is still a deadly disease with extremely poor prognosis (average survival of 18 months). One of the main strategies to achieve lower mortality is the early detection, localization and typing, followed the precise therapy and monitoring of the tumor. In the field of diagnosis, nanotechnology plays an important role and several nanosystems have improved the accuracy of different imaging techniques. This is the case of superparamagnetic iron oxide nanoparticles (SPION) for magnetic resonance imaging (MRI) or gold nanoparticles (AuNP) for computed tomography (CT). From the therapeutic point of view, doxorubicin (DOX) is a potent antineoplastic drug widely used in the treatment of cancer. Administered in a free form it does not target the tumor and high doses are needed, which cause cardiotoxicity. Nanomedicine is also considered an interesting alternative since the drug encapsulated has greater the bioavailability, decreasing the toxicity and increasing the efficacy of the treatment. On top of that, numerous studies such as those carried out by our research group have shown that by modifying the surface of the nanocarriers with for example the surfactant Tween® 80 (T80), they are able to cross the blood brain barrier (BBB): failure to do so is the main cause of chemotherapy failure in CNS diseases. It is indeed well acknowledged that magnetic nanoparticles, like the SPION already mentioned, could also improve the specificity of treatment since they can be attracted by magnets. All in all, it is possible to combine the application of nanotechnology to the diagnosis and treatment of diseases such as glioma, leading to theragnosis. As a matter of fact, diagnostic/therapeutic nanoplatforms are a new and promising step towards personalized medicine and early diagnosis. The primary hypothesis of this project is that the coencapsulation of DOX (as a treatment agent) and AuNP or SPION (as a diagnostic agents) in the same nanosystem will allow NP monitoring and, therefore, tumor monitoring. Apart from that, the encapsulation of DOX in polymeric nanoparticles (PNP) coated with different surfactants along with magnetic targeting of SPION will allow BBB permeation and therefore glioma therapy improvement. Overall, the main objective of this project is the design and development of nanosystems for the treatment and diagnosis of cancer. The second objective is to study the influence of different surfactants in the BBB permeation, as well as the influence of magnetic targeting of SPION inside the brain
    corecore